A computational analysis of central CO2 chemosensitivity in Helix aspersa.
نویسندگان
چکیده
We created a single-compartment computer model of a CO(2) chemosensory neuron using differential equations adapted from the Hodgkin-Huxley model and measurements of currents in CO(2) chemosensory neurons from Helix aspersa. We incorporated into the model two inward currents, a sodium current and a calcium current, three outward potassium currents, an A-type current (I(KA)), a delayed rectifier current (I(KDR)), a calcium-activated potassium current (I(KCa)), and a proton conductance found in invertebrate cells. All of the potassium channels were inhibited by reduced pH. We also included the pH regulatory process to mimic the effect of the sodium-hydrogen exchanger (NHE) described in these cells during hypercapnic stimulation. The model displayed chemosensory behavior (increased spike frequency during acid stimulation), and all three potassium channels participated in the chemosensory response and shaped the temporal characteristics of the response to acid stimulation. pH-dependent inhibition of I(KA) initiated the response to CO(2), but hypercapnic inhibition of I(KDR) and I(KCa) affected the duration of the excitatory response to hypercapnia. The presence or absence of NHE activity altered the chemosensory response over time and demonstrated the inadvisability of effective intracellular pH (pH(i)) regulation in cells designed to act as chemostats for acid-base regulation. The results of the model indicate that multiple channels contribute to CO(2) chemosensitivity, but the primary sensor is probably I(KA). pH(i) may be a sufficient chemosensory stimulus, but it may not be a necessary stimulus: either pH(i) or extracellular pH can be an effective stimuli if chemosensory neurons express appropriate pH-sensitive channels. The lack of pH(i) regulation is a key feature determining the neuronal activity of chemosensory cells over time, and the balanced lack of pH(i) regulation during hypercapnia probably depends on intracellular activation of pH(i) regulation but extracellular inhibition of pH(i) regulation. These general principles are applicable to all CO(2) chemosensory cells in vertebrate and invertebrate neurons.
منابع مشابه
CO2 chemosensitivity in Helix aspersa: three potassium currents mediate pH-sensitive neuronal spike timing.
Elevated levels of carbon dioxide increase lung ventilation in Helix aspersa. The hypercapnic response originates from a discrete respiratory chemosensory region in the dorsal subesophageal ganglia that contains CO(2)-sensitive neurons. We tested the hypothesis that pH-dependent inhibition of potassium channels in neurons in this region mediated the chemosensory response to CO(2). Cells isolate...
متن کاملComparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording
While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...
متن کاملModification of Nifedipine Inhibitory Effect on Calcium Spike and L-Type Calcium Current by Ethanol in F1 Neuron of Helix aspersa
There is strong evidence demonstrating that nifedipine dissolved in ethanol selectively inhibits only L-type Ca2+ current. In addition, acute ethanol exposure reduces voltage-dependent calcium currents. In the present study, we investigated the antagonistic effect of fixed concentration of nifedipine dissolved in different concentration of ethanol on L-type Ca2+ current. In a Na+-K+ free soluti...
متن کاملDistribution of alpha CDCP-immunoreactive neurons in the central nervous system of the snail Helix aspersa.
alpha CDCP is a neuropeptide produced by the caudodorsal cells of Lymnaea stagnalis and encoded by the genes of the egg-laying hormone (ELH). The use of a polyclonal antiserum raised against alpha CDCP resulted in the detection of about 800 immunoreactive neurons in the parietal ganglia and a small population (60 cells) in the cerebral ganglia of Helix aspersa. As the genes of ELH are well cons...
متن کاملThe modulatory effects of orexin B on the calcium channels activity in neuronal cells of Helix aspersa (garden snail)
Introduction: The functional effects of orexin-B on the calcium spikes and excitability of the neuronal soma membrane of garden snail, Helix aspersa were studied. Methods: Conventional intracellular recording, under the current clamp conditions was performed to examine the effects of orexin-B on the configuration and electrophysiological properties of calcium spikes. Results: Application o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 292 1 شماره
صفحات -
تاریخ انتشار 2007